NUCLEOPHILIC CHARACTER IN DIMETHYLVINYLIDENE CARBENE CARBON-HYDROGEN INSERTION REACTIONS

Timothy B. Patrick* and Dennis L. Schutzenhofer¹ Department of Chemistry, Southern Illinois University Edwardsville, Illinois 62026 USA

(Received in USA 10 June 1975; received in UK for publication 11 August 1975)

Nucleophilic character in singlet carbene addition to olefins is noted when the vacant p orbital of the carbene is stabilized by an adjacent electron donating substituent or by participation in an aromatic system². Nucleophilic carbene character in carbon-hydrogen insertion reactions has not been reported. We have found that dimethylvinylidene carbene (A)³ undergoes insertion into the methylene protons of benzyl alcohols (1) to yield 1phenyl-4-methyl-2,3-pentadien-1-ols (2) in good yields. Satisfactory analytical data were obtained for all new compounds (Table I).

$$(CH)_{3}C=C=C: + X-PhCH_{2}OH \longrightarrow X-PhCH(OH)CH=C=C(CH_{3})_{2}$$

$$A \qquad 1 \qquad 2 \qquad X = p-Br, p-C1, H, p-CH_{2}, p-OCH_{2}$$

Electron attracting substituents accelerate the rate of A insertion into the benzylic C-H bond; electron releasing substituents retard the rate relative to X=H. A good linear Hammett correlation (20°) was observed with a rho value of +0.52 \pm 0.04 (r = 0.997, 99% confidence, Table II). The small positive rho value is in agreement with a transition state involving concerted insertion and a small partial negative charge on the benzylic carbon atom.⁴ The hydroxyl function apparently is responsible for this nucleophilic behavior of A since neither cumene nor benzyl methyl ether was found to undergo insertion.

н
Ð
-
д,
đ
H

Yields, Spectral Data, and Elemental Analysis of Products

$(CH_3)_2$ C=C=CHCH (OH) Ph-X

X-	Yield Z	Ir cm ⁻¹ (neat)	Nur (CC1 ₄), δ		
H.	72	3475 (OH) 3040, 3075, 3100 (aromatic) 1975 (allene) 700 (<u>mono</u> -substituted benzene)	7.2 (s, 5H, aromatic) 5.1 (s, 2H, C- <u>H)</u> 1.9 (broad, 1H, O <u>H)</u> 1.7 (d, 6H, C <u>H</u> 3, <u>J</u> =3Hz)	Calcd Found	82.7 <u>8</u> .1 82.8 8.0
-Br	35	3350 (OH) 3025, 3050 (aromatic) 1950 (allene) 810 (<u>para</u> -disubstituted benzene)	7.1-7.6 (m, 4H, aromatic) 5.1 (s, 2H, C- <u>H)</u> 1.7 (d, 6H, C <u>H</u> 3, <u>1</u> *3Hz)	Calcd Found	$\frac{C}{56.9} = \frac{H}{5.2} = \frac{Br}{31.6}$ 56.8 5.3 31.8
-CI	56	3350 (O <u>H</u>) 3000 (aromatic) 1950 (allene) 810 (<u>para</u> -disubstituted benzene)	7.2 (s, 4 <u>H</u> , aromatic) 5.1 (s, 2 <u>H</u> , C- <u>H</u>) 1.7 (d, 6H, C <u>H</u> ₃ , <u>J</u> =3Hz)	Calcd Found	<u>C H</u> <u>C1</u> 69.1 <u>6.3 17</u> .0 69.4 6.5 18.0
-cH ₃	68	3400 (OH) 3000, 3050 (aromatic) 1950 (allene)	7.1 (m, 4H, aromatic) 2.4 (s, 3H, CH ₃ Ph- 1.7 (d, 6H, C <u>H₃Ph-</u>	Calcd Found	<u>с</u> н 82.9 8.6 81.5 8.6
-осн ₃	55	3350 (OH) 3050, 3025, 3000 (aromatic) 1950 (allene) 810 (<u>para</u> -disubstituted benzene)	5.0 (s, $C-H$) 1.7 (d, CH_3)	Calcd Found	CC H 76.4 7.9 76.1 7.7

 X
 Relative Reactivity^a

 p-Br
 1.2

 p-C1
 1.1

 H
 1.0

 p-CH₃
 0.73

 p-OCH₃
 0.39

^aDetermined by glpc using competitive experiments. The values represent an average of three runs using benzyl alcohol standard, and three runs using para-methylbenzyl alcohol as a standard.

A mechanism which accomodates the observations is one in which the weakly electrophilic⁵ singlet⁶ A is attracted to the hydroxyl function through hydrogen bonding to give \underline{B}^7 which then converts to ylide C. Ylide C then gives rise to the observed carbon-hydrogen insertion.

Thus hydrogen bonding facilitates the formation of the ylide. Precedence for similar behavior in other carbene reactions is found in reactions with 2-propanol which gives alpha carbon-hydrogen insertion whereas diethyl ether shows random insertion.⁸

Examination of Drieding molecular models for the carbon-hydrogen insertion reaction in ylide C reveals a slight preference (0.1 Å) for attack on the hydrogen atom⁹ as opposed to attack on the electrons of carbon-hydrogen bond.¹⁰ Substituents do not appreciably change the hybridization of benzylic carbon-hydrogen bonds in both toluene¹¹ and carbanion systems.¹² We feel that the substitutents in our system are exerting their influence on the negative charge only; effects on the carbon-hydrogen bond order are most likely negligible and do not influence the observed relative rates.

References

- Taken from the Master's thesis of D. L. S., Southern Illinois University, 1974. Research support by the SIUE Office of Research and Projects is gratefully acknowledged.
- R. Moss, "Carbenes," Vol. I, M. Jones, Jr. and R. Moss, Eds., John Wiley and Sons, New York, N. Y. 1973.
- 3. S. R. Landor and P. F. Whiter, J. Chem. Soc., 5625 (1966).
- A. Streitwieser, Jr. and H. F. Kock, (J. Am. Chem. Soc., 86, 404(1964) show that a full negative charge gives rise to a rho value of 4.0.
- 5. H. D. Hartzler, J. Am. Chem. Soc., 96, 7950 (1974).
- T. B. Patrick, E. C. Haynie, and W. J. Probst, <u>J. Org. Chem</u>., <u>37</u>, 1553 (1972).
- 7. J.C. Craig and C. D. Beard, J. Am. Chem. Soc., 96, 7950 (1974).
- W. Kirmse, "Carbene Chemistry," 2nd Ed., Academic Press, New York, N. Y., 1971, pp. 230-231, 423-434.
- R. C. Dobson, D. M. Hayes, and R. Hoffman, <u>J. Am. Chem. Soc</u>., 93, 6188 (1971); N. Bodor, M. J. S. Dewar, and J. S. Wasson, <u>ibid</u>., 94, 9095
- C. D. Gutsche, G. L. Backman, W. Udell, and S. Bauerlein, <u>ibid.</u>, <u>93</u>, 5172 (1971).
- 11. C. H. Yoder, R. H. Tuck, and R. E. Hess, ibid, 91, 539 (1969).
- A. Streitwieser, Jr., M. R. Granger, F. Mares, and R. A. Wolf (<u>ibid.</u>, 95, 4257 (1973) suggest that hybridization changes are negligible for carbon-hydrogen bonds in benzylic carbanions.